FaheemKalwar@Yahoo.Com

Intro to the C++ Language

A C++ program is a collection of commands, which tell the computer to do
"something". This collection of commands is usually called C++ source
code, source code or just code. Commands are either "functions" or
"keywords". Keywords are a basic building block of the language, while
functions are, in fact, usually written in terms of simpler functions--you'll see
this in our very first program, below. (Confused? Think of it a bit like an
outline for a book; the outline might show every chapter in the book; each
chapter might have its own outline, composed of sections. Each section might
have its own outline, or it might have all of the details written up.)
Thankfully, C++ provides a great many common functions and keywords that
you can use.

But how does a program actually start? Every program in C++ has one
function, always named main, that is always called when your program first
executes. From main, you can also call other functions whether they are
written by us or, as mentioned earlier, provided by the compiler.

So how do you get access to those prewritten functions? To access those
standard functions that comes with the compiler, you include a header with
the #include directive. What this does is effectively take everything in the
header and paste it into your program. Let's look at a working program:

#include <iostream.h>

int main ()

{
COut<<"HEY, you, I'm alive! Oh, and Hello World!\n";
cin.get () ;

}

Let's look at the elements of the program. The #include is a "preprocessor"
directive that tells the compiler to put code from the header called iostream
into our program before actually creating the executable. By including header
files, you an gain access to many different functions. For example, the cout
function requires iostream. Following the include is the statement, "using
namespace std;". This line tells the compiler to use a group of functions that
are part of the standard library (std). By including this line at the top of a file,
you allow the program to use functions such as cout. The semicolon is part of
the syntax of C and C++. It tells the compiler that you're at the end of a
command. You will see later that the semicolon is used to end most
commands in C++.

FaheemKalwar@Yahoo.Com

The next imporant line is int main(). This line tells the compiler that there is a
function named main, and that the function returns an integer, hence int. The
"curly braces" ({ and }) signal the beginning and end of functions and other
code blocks. You can think ofknow them as meaning BEGIN and END.

The next line of the program may seem strange. If you have programmed in
another language, you might expect that print would be the function used to
display text. In C++, however, the cout object is used to display text
(pronounced "C out"). It uses the << symbols, known as "insertion
operators", to indicate what to output. cout<< results in a function call with
the ensuing text as an argument to the function. The quotes tell the compiler
that you want to output the literal string as-is. The '"\n' sequence is actually
treated as a single character that stands for a newline (we'll talk about this
later in more detail). It moves the cursor on your screen to the next line.
Again, notice the semicolon: it is added onto the end of all, such as function
calls, in C++.

The next command is cin.get(). This is another function call: it reads in input
and expects the user to hit the return key. Many compiler environments will
open a new console window, run the program, and then close the window.
This command keeps that window from closing because the program is not
done yet because it waits for you to hit enter. Including that line gives you
time to see the program run.

Upon reaching the end of main, the closing brace, our program will return the
value of 0 (and integer, hence why we told main to return an int) to the
operating system. This return value is important as it can be used to tell the
OS whether our program succeeded or not. A return value of 0 means
success and is returned automatically (but only for main, other functions
require you to manually return a value), but if we wanted to return
something else, such as 1, we would have to do it with a return statement:

#include <iostream>

int main ()

{
COUut<<"HEY, you, I'm alive! Oh, and Hello World!\n";
cin.get () ;

return 1;

}

The final brace closes off the function. You should try compiling this program
and running it. You can cut and paste the code into a file, save it as a .cpp
file. Our Code::Blocks tutorial actually takes you through creating a simple
program, so check it out if you're confused.

FaheemKalwar@Yahoo.Com

If you are not using Code::Blocks, you should read the compiler instructions
for information on how to compile.

Once you've got your first program running, why don't you try playing around
with the cout function to get used to writing C++7?

An Aside on Commenting Your Programs

As you are learning to program, you should also start to learn how to explain
your programs (for yourself, if no one else). You do this by adding comments
to code; I'll use them frequently to help explain code examples.

When you tell the compiler a section of text is a comment, it will ignore it
when running the code, allowing you to use any text you want to describe
the real code. To create a comment use either //, which tells the compiler
that the rest of the line is a comment, or /* and then */ to block off
everything between as a comment. Certain compiler environments will
change the color of a commented area, but some will not. Be certain not to
accidentally comment out code (that is, to tell the compiler part of your code
is a comment) you need for the program. When you are learning to program,
it is useful to be able to comment out sections of code in order to see how
the output is affected.

User interaction and Saving Information
with Variables

So far you've learned how to write a simple program to display information
typed in by you, the programmer, and how to describe your program with
comments. That's great, but what about interacting with your user?
Fortunately, it is also possible for your program to accept input. The function
you use is known as cin, and is followed by the insertion operator >>.

Of course, before you try to receive input, you must have a place to store
that input. In programming, input and data are stored in variables. There are
several different types of variables which store different kinds of information
(e.g. numbers versus letters); when you tell the compiler you are declaring a
variable, you must include the data type along with the name of the variable.
Several basic types include char, int, and float.

A variable of type char stores a single character, variables of type int store
integers (numbers without decimal places), and variables of type float store
numbers with decimal places. Each of these variable types - char, int, and
float - is each a keyword that you use when you declare a variable.

What's with all these variable types?

FaheemKalwar@Yahoo.Com

Sometimes it can be confusing to have multiple variable types when it seems
like some variable types are redundant (why have integer numbers when you
have floats?). Using the right variable size can be important for making your
code readable and for efficiency--some variables require more memory than
others. Moreover, because of the way the numbers are actually stored in
memory, a float is "inexact", and should not be used when you need to store
an "exact" integer value.

Declaring Variables in C++

To declare a variable you use the syntax "type <name>;". Here are some
variable declaration examples:

int x;
char letter;
float the float;

It is permissible to declare multiple variables of the same type on the same
line; each one should be separated by a comma.

int a, b, c, d;

If you were watching closely, you might have seen that declaration of a
variable is always followed by a semicolon (note that this is the same
procedure used when you call a function).

Common Errors when Declaring Variables in C++

If you attempt to use a variable that you have not declared, your program
will not be compiled or run, and you will receive an error message informing
you that you have made a mistake. Usually, this is called an undeclared
variable Don't forget that variables, just like keywords, are case-sensitive,
so it's best to use a consistent capitalization scheme to avoid these errors.

While you can have multiple variables of the same type, you cannot have
multiple variables with the same name. Moreover, you cannot have variables
and functions with the same name.

Using Variables

Ok, so you now know how to tell the compiler about variables, but what
about using them?

Here is a sample program demonstrating the use of a variable:

#include <iostream>

using namespace std;

FaheemKalwar@Yahoo.Com

int main ()

{

int thisisanumber;

cout<<"Please enter a number: ";

cin>> thisisanumber;

cin.ignore () ;

cout<<"You entered: "<< thisisanumber <<"\n";
cin.get ()

}

Let's break apart this program and examine it line by line. The keyword int
declares thisisanumber to be an integer. The function cin>> reads a value
into thisisanumber; the user must press enter before the number is read by
the program. cin.ignore() is another function that reads and discards a
character. Remember that when you type intput into a program, it takes the
enter key too. We don't need this, so we throw it away. Keep in mind that
the variable was declared an integer; if the user attempts to type in a
decimal number, it will be truncated (that is, the decimal component of the
number will be ignored). Try typing in a sequence of characters or a decimal
number when you run the example program; the response will vary from
input to input, but in no case is it particularly pretty. Notice that when
printing out a variable quotation marks are not used. Were there quotation
marks, the output would be "You Entered: thisisanumber." The lack of
quotation marks informs the compiler that there is a variable, and therefore
that the program should check the value of the variable in order to replace
the variable name with the variable when executing the output function. Do
not be confused by the inclusion of two separate insertion operators on one
line. Including multiple insertion operators on one line is perfectly acceptable
and all of the output will go to the same place. In fact, you must separate
string literals (strings enclosed in quotation marks) and variables by giving
each its own insertion operators (<<). Trying to put two variables together
with only one << will give you an error message, do not try it. Do not forget
to end functions and declarations with a semicolon. If you forget the
semicolon, the compiler will give you an error message when you attempt to
compile the program.

Changing and Comparing Variables

Of course, no matter what type you use, variables are uninteresting without
the ability to modify them. Several operators used with variables include the
following: *, -, +, /, =, ==, >, <. The * multiplies, the - subtracts, and the +
adds. It is of course important to realize that to modify the value of a
variable inside the program it is rather important to use the equal sign. In
some languages, the equal sign compares the value of the left and right
values, but in C++ == is used for that task. The equal sign is still extremely
useful. It sets the left input to the equal sign, which must be one, and only
one, variable equal to the value on the right side of the equal sign. The

FaheemKalwar@Yahoo.Com

operators that perform mathematical functions should be used on the right
side of an equal sign in order to assign the result to a variable on the left
side.

Here are a few examples:

a =4 * 6; // (Note use of comments and of semicolon) a
is 24

a =a+ 5; // a equals the original value of a with five
added to it

a == // Does NOT assign five to a. Rather, it
checks to see if a equals 5.

The other form of equal, ==, is not a way to assign a value to a variable.
Rather, it checks to see if the variables are equal. It is useful in other areas
of C++; for example, you will often use == in such constructions as
conditional statements and loops. You can probably guess how < and >
function. They are greater than and less than operators.

For example:

a <5 // Checks to see if a is less than five

a >5 // Checks to see if a is greater than five
a == 5 // Checks to see if a equals five, for good
measure

Did you follow that? Quiz yourself
Next: If Statements - Conditionally Changing Program Behavior

Lesson 2: If statements(Printable Version)

The ability to control the flow of your program, letting it make decisions on
what code to execute, is valuable to the programmer. The if statement allows
you to control if a program enters a section of code or not based on whether
a given condition is true or false. One of the important functions of the if
statement is that it allows the program to select an action based upon the
user's input. For example, by using an if statement to check a user entered
password, your program can decide whether a user is allowed access to the
program.

E-ak-aratard

Without a conditional statement such as the if statement, programs would
run almost the exact same way every time. If statements allow the flow of
the program to be changed, and so they allow algorithms and more

FaheemKalwar@Yahoo.Com

interesting code.

Before discussing the actual structure of the if statement, let us examine the
meaning of TRUE and FALSE in computer terminology. A true statement is
one that evaluates to a nonzero number. A false statement evaluates to zero.
When you perform comparison with the relational operators, the operator will
return 1 if the comparison is true, or 0 if the comparison is false. For
example, the check 0 == 2 evaluates to 0. The check 2 == 2 evaluates to a
1. If this confuses you, try to use a cout statement to output the result of
those various comparisons (for example cout<< (2 ==1);)

When programming, the aim of the program will often require the checking of
one value stored by a variable against another value to determine whether
one is larger, smaller, or equal to the other.

There are a number of operators that allow these checks.

Here are the relational operators, as they are known, along with examples:

> greater than 5 > 4 is TRUE
< less than 4 < 5 is TRUE
>= greater than or equal 4 >= 4 is TRUE
<= less than or equal 3 <= 4 is TRUE
== equal to 5 == 5 is TRUE
= not equal to 5 I'= 4 is TRUE

It is highly probable that you have seen these before, probably with slightly
different symbols. They should not present any hindrance to understanding.
Now that you understand TRUE and FALSE in computer terminology as well
as the comparison operators, let us look at the actual structure of if
statements.

The structure of an if statement is as follows:

if (TRUE)
Execute the next statement

To have more than one statement execute after an if statement that
evaluates to true, use braces, like we did with the body of a function.
Anything inside braces is called a compound statement, or a block.

For example:

if (TRUE) {
Execute all statements inside the braces

FaheemKalwar@Yahoo.Com

}

There is also the else statement. The code after it (whether a single line or
code between brackets) is executed if the if statement is FALSE.

It can look like this:

if (TRUE) {
// Execute these statements if TRUE
}

else {
// Execute these statements if FALSE
}

One use for else is if there are two conditional statements that may both
evaluate to true, yet you wish only one of the two to have the code block
following it to be executed. You can use an else if after the if statement; that
way, if the first statement is true, the else if will be ignored, but if the if
statement is false, it will then check the condition for the else if statement. If
the if statement was true the else statement will not be checked. It is
possible to use numerous else if statements.

Let's look at a simple program for you to try out on your own.

#include <iostream>
using namespace std;
int main () // Most important

part of the program!
{

int age; // Need a
variable. ..

cout<<"Please input your age: "; // Asks for age

cin>> age; // The input is put
in age

cin.ignore () ; // Throw away enter

if (age < 100) { // If the age is

less than 100
cout<<"You are pretty young!\n"; // Just to show you
it works...

}

else if (age == 100) { // I use else just
to show an example
cout<<"You are old\n"; // Just to show you

it works...

FaheemKalwar@Yahoo.Com

}
else {
cout<<"You are really old\n"; // Executed if no
other statement is
}
cin.get () ;

}

Boolean operators allow you to create more complex conditional statements.
For example, if you wish to check if a variable is both greater than five and
less than ten, you could use the boolean AND to ensure both var > 5 and var
< 10 are true. In the following discussion of boolean operators, I will
capitalize the boolean operators in order to distinguish them from normal
english. The actual C++ operators of equivalent function will be described
further into the tutorial - the C++ symbols are not: OR, AND, NOT, although
they are of equivalent function.

When using if statements, you will often wish to check multiple different
conditions. You must understand the Boolean operators OR, NOT, and AND.
The boolean operators function in a similar way to the comparison operators:
each returns 0 if evaluates to FALSE or 1 if it evaluates to TRUE.

NOT: The NOT operator accepts one input. If that input is TRUE, it returns
FALSE, and if that input is FALSE, it returns TRUE. For example, NOT (1)
evalutes to 0, and NOT (0) evalutes to 1. NOT (any number but zero)
evaluates to 0. In C and C++ NOT is written as !. NOT is evaluated prior to
both AND and OR.

AND: This is another important command. AND returns TRUE if both inputs
are TRUE (if 'this' AND 'that' are true). (1) AND (0) would evaluate to zero
because one of the inputs is false (both must be TRUE for it to evaluate to
TRUE). (1) AND (1) evaluates to 1. (any number but 0) AND (0) evaluates to
0. The AND operator is written && in C++. Do not be confused by thinking it
checks equality between numbers: it does not. Keep in mind that the AND
operator is evaluated before the OR operator.

OR: Very useful is the OR statement! If either (or both) of the two values it
checks are TRUE then it returns TRUE. For example, (1) OR (0) evaluates to
1. (0) OR (0) evaluates to 0. The OR is written as || in C++. Those are the
pipe characters. On your keyboard, they may look like a stretched colon. On
my computer the pipe shares its key with \. Keep in mind that OR will be
evaluated after AND.

It is possible to combine several boolean operators in a single statement;
often you will find doing so to be of great value when creating complex
expressions for if statements. What is (1 && 0)? Of course, it would be
TRUE. It is true is because 1 && 0 evaluates to 0 and !0 evaluates to TRUE

FaheemKalwar@Yahoo.Com

(ie, 1).

Try some of these - they're not too hard. If you have questions about them,
feel free to stop by our forums.

A. (1 || 0) ANSWER: O

B. '(1 || 1 && 0) ANSWER: 0O (AND is evaluated before
OR)

C. 'C (1 1]] 0) && 0) ANSWER: 1 (Parenthesis are
useful)

If you find you enjoyed this section, then you might want to look more at
Boolean Algebra.

Quiz yourself
Previous: The Basics
Next: Loops

Lesson 3: Loops
(Printable Version)

Loops are used to repeat a block of code. Being able to have your program
repeatedly execute a block of code is one of the most basic but useful tasks
in programming -- many programs or websites that produce extremely
complex output (such as a message board) are really only executing a single
task many times. (They may be executing a small number of tasks, but in
principle, to produce a list of messages only requires repeating the operation
of reading in some data and displaying it.) Now, think about what this
means: a loop lets you write a very simple statement to produce a
significantly greater result simply by repetition.

[RIRTRIITZ]

One Caveat: before going further, you should understand the concept of
C++'s true and false, because it will be necessary when working with loops
(the conditions are the same as with if statements). There are three types of
loops: for, while, and do..while. Each of them has their specific uses. They
are all outlined below.

FOR - for loops are the most useful type. The syntax for a for loop is

FaheemKalwar@Yahoo.Com

for (variable initialization; condition; variable update

) A

Code to execute while the condition 1is true

}

The variable initialization allows you to either declare a variable and give it a
value or give a value to an already existing variable. Second, the condition
tells the program that while the conditional expression is true the loop should
continue to repeat itself. The variable update section is the easiest way for a
for loop to handle changing of the variable. It is possible to do things like
Xx++, X = X + 10, or even x = random (5), and if you really wanted to, you
could call other functions that do nothing to the variable but still have a
useful effect on the code. Notice that a semicolon separates each of these
sections, that is important. Also note that every single one of the sections
may be empty, though the semicolons still have to be there. If the condition
is empty, it is evaluated as true and the loop will repeat until something else
stops it.

Example:

#include <iostream>

using namespace std; // So the program can see cout and
endl

int main ()
{
// The loop goes while x < 10, and x increases by one
every loop
for (int x = 0; x < 10; x++) {
// Keep in mind that the loop condition checks
// the conditional statement before it loops again.
// consequently, when x equals 10 the loop breaks.
// x 1s updated before the condition is checked.
cout<< x <<endl;
}
cin.get () ;

}

This program is a very simple example of a for loop. x is set to zero, while x
is less than 10 it calls cout<< x <<endl; and it adds 1 to x until the condition
is met. Keep in mind also that the variable is incremented after the code in
the loop is run for the first time.

WHILE - WHILE loops are very simple. The basic structure is

FaheemKalwar@Yahoo.Com

while (condition) { Code to execute while the condition is true }

The true represents a boolean expression which could be x == 1 or while (x
I=7) (x does not equal 7). It can be any combination of boolean statements
that are legal. Even, (while x ==5 || v == 7) which says execute the code
while x equals five or while v equals 7. Notice that a while loop is the same as
a for loop without the initialization and update sections. However, an empty
condition is not legal for a while loop as it is with a for loop.

Example:

#include <iostream>
using namespace std; // So we can see cout and endl

int main ()

{

int x = 0; // Don't forget to declare variables

while (x < 10) { // While x is less than 10
cout<< x <<endl;
x++; // Update x so the condition can be
met eventually
}
cin.get () ;

}

This was another simple example, but it is longer than the above FOR loop.
The easiest way to think of the loop is that when it reaches the brace at the
end it jumps back up to the beginning of the loop, which checks the condition
again and decides whether to repeat the block another time, or stop and
move to the next statement after the block.

DO..WHILE - DO..WHILE loops are useful for things that want to loop at least
once. The structure is

do {
} while (condition);

Notice that the condition is tested at the end of the block instead of the
beginning, so the block will be executed at least once. If the condition is true,
we jump back to the beginning of the block and execute it again. A do..while
loop is basically a reversed while loop. A while loop says "Loop while the
condition is true, and execute this block of code", a do..while loop says
"Execute this block of code, and loop while the condition is true".

Example:

FaheemKalwar@Yahoo.Com

#include <iostream>
using namespace std;

int main ()

{

int x;

x = 0;

do {
// "Hello, world!" is printed at least one time
// even though the condition is false
cout<<"Hello, world!\n";

} while (x != 0);

cin.get () ;

}

Keep in mind that you must include a trailing semi-colon after the while in
the above example. A common error is to forget that a do..while loop must
be terminated with a semicolon (the other loops should not be terminated
with a semicolon, adding to the confusion). Notice that this loop will execute
once, because it automatically executes before checking the condition.

Quiz yourself
Previous: If Statements

Lesson 4: Functions
(Printable Version)

Now that you should have learned about variables, loops, and conditional
statements it is time to learn about functions. You should have an idea of
their uses as we have already used them and defined one in the guise of
main. cin.get() is an example of a function. In general, functions are blocks
of code that perform a number of pre-defined commands to accomplish
something productive.

Eatanatard

Functions that a programmer writes will generally require a prototype. Just
like a blueprint, the prototype tells the compiler what the function will return,
what the function will be called, as well as what arguments the function can
be passed. When I say that the function returns a value, I mean that the

FaheemKalwar@Yahoo.Com

function can be used in the same manner as a variable would be. For
example, a variable can be set equal to a function that returns a value
between zero and four.

For example:

#include <cstdlib> // Include rand()
using namespace std; // Make rand() visible

int a = rand(); // rand is a standard function that all
compilers have

Do not think that 'a' will change at random, it will be set to the value
returned when the function is called, but it will not change again.

The general format for a prototype is simple:

return-type function name (arg type argl, ..., arg type
argN) ;

arg_type just means the type for each argument -- for instance, an int, a
float, or a char. It's exactly the same thing as what you would put if you were
declaring a variable.

There can be more than one argument passed to a function or none at all
(where the parentheses are empty), and it does not have to return a value.
Functions that do not return values have a return type of void. Lets look at a
function prototype:

int mult (int x, int y);

This prototype specifies that the function mult will accept two arguments,
both integers, and that it will return an integer. Do not forget the trailing
semi-colon. Without it, the compiler will probably think that you are trying to
write the actual definition of the function.

When the programmer actually defines the function, it will begin with the
prototype, minus the semi-colon. Then there should always be a block with
the code that the function is to execute, just as you would write it for the
main function. Any of the arguments passed to the function can be used as if
they were declared in the block. Finally, end it all with a cherry and a closing
brace. Okay, maybe not a cherry.

Lets look at an example program:

FaheemKalwar@Yahoo.Com

#include <iostream>
using namespace std;
int mult (int x, int y);

int main ()
{
int x;
int vy;

cout<<"Please input two numbers to be multiplied: ";

cin>> x >> y;

cin.ignore () ;

cout<<"The product of your two numbers is "<< mult (x,
y) <<"\n";

cin.get () ;

}

int mult (int x, int y)
{

return x * y;

}

This program begins with the only necessary include file and a directive to
make the std namespace visible. Everything in the standard headers is inside
of the std namespace and not visible to our programs unless we make them
so. Next is the prototype of the function. Notice that it has the final
semi-colon! The main function returns an integer, which you should always
have to conform to the standard. You should not have trouble understanding
the input and output functions. It is fine to use cin to input to variables as the
program does. But when typing in the numbers, be sure to separate them by
a space so that cin can tell them apart and put them in the right variables.

Notice how cout actually outputs what appears to be the mult function. What
is really happening is cout is printing the value returned by mult, not mult
itself. The result would be the same as if we had use this print instead

cout<<"The product of your two numbers is "<< x * vy
<<"\n";

The mult function is actually defined below main. Due to its prototype being
above main, the compiler still recognizes it as being defined, and so the
compiler will not give an error about mult being undefined. As long as the
prototype is present, a function can be used even if there is no definition.
However, the code cannot be run without a definition even though it will

FaheemKalwar@Yahoo.Com

compile. The prototype and definition can be combined into one also. If mult
were defined before it is used, we could do away with the prototype because
the definition can act as a prototype as well.

Return is the keyword used to force the function to return a value. Note that
it is possible to have a function that returns no value. If a function returns
void, the retun statement is valid, but only if it does not have an expression.
In otherwords, for a function that returns void, the statement "return;" is
legal, but redundant.

The most important functional (Pun semi-intended) question is why do we
need a function? Functions have many uses. For example, a programmer
may have a block of code that he has repeated forty times throughout the
program. A function to execute that code would save a great deal of space,
and it would also make the program more readable. Also, having only one
copy of the code makes it easier to make changes. Would you rather make
forty little changes scattered all throughout a potentially large program, or
one change to the function body? So would I.

Another reason for functions is to break down a complex program into logical
parts. For example, take a menu program that runs complex code when a
menu choice is selected. The program would probably best be served by
making functions for each of the actual menu choices, and then breaking
down the complex tasks into smaller, more manageable tasks, which could
be in their own functions. In this way, a program can be designed that makes
sense when read. And has a structure that is easier to understand quickly.
The worst programs usually only have the required function, main, and fill it
with pages of jumbled code.

Quiz yourself
Previous: Loops
Next: Switch/case

Lesson 6: An introduction to pointers
(Printable Version)

Pointers are an extremely powerful programming tool. They can make some
things much easier, help improve your program's efficiency, and even allow
you to handle unlimited amounts of data. For example, using pointers is one
way to have a function modify a variable passed to it. It is also possible to
use pointers to dynamically allocate memory, which means that you can write
programs that can handle nearly unlimited amounts of data on the fly--you

FaheemKalwar@Yahoo.Com

don't need to know, when you write the program, how much memory you
need. Wow, that's kind of cool. Actually, it's very cool, as we'll see in some of
the next tutorials. For now, let's just get a basic handle on what pointers are
and how you use them.

@1ereieieWhat are pointers? Why should
you care?

Pointers are aptly named: they "point" to locations in memory. Think of a row
of safety deposit boxes of various sizes at a local bank. Each safety deposit
box will have a number associated with it so that the teller can quickly look it
up. These numbers are like the memory addresses of variables. A pointer in
the world of safety deposit box would simply be anything that stored the
number of another safety deposit box. Perhaps you have a rich uncle who
stored valuables in his safety deposit box, but decided to put the real location
in another, smaller, safety deposit box that only stored a card with the
number of the large box with the real jewelery. The safety deposit box with
the card would be storing the location of another box; it would be equivalent
to a pointer. In the computer, pointers are just variables that store memory
addresses, usually the addresses of other variables.

The cool thing is that once you can talk about the address of a variable, you'll
then be able to go to that address and retrieve the data stored in it. If you
happen to have a huge piece of data that you want to pass into a function,
it's a lot easier to pass its location to the function than to copy every element
of the data! Moreover, if you need more memory for your program, you can
request more memory from the system--how do you get "back" that
memory? The system tells you where it is located in memory; that is to say,
you get a memory address back. And you need pointers to store the memory
address.

A note about terms: the word pointer can refer either to a memory address
itself, or to a variable that stores a memory address. Usually, the distinction
isn't really that important: if you pass a pointer variable into a function,
you're passing the value stored in the pointer--the memory address. When I
want to talk about a memory address, I'll refer to it as a memory address;
when I want a variable that stores a memory address, I'll call it a pointer.
When a variable stores the address of another variable, I'll say that it is
"pointing to" that variable.

Pointer Syntax

Pointers require a bit of new syntax because when you have a pointer, you
need the ability to request both the memory location it stores and the value
stored at that memory location. Moreover, since pointers are somewhat
special, you need to tell the compiler when you declare your pointer variable

FaheemKalwar@Yahoo.Com

that the variable is a pointer, and tell the compiler what type of memory it
points to.

The pointer declaration looks like this:

<variable type> *<name>;

For example, you could declare a pointer that stores the address of an
integer with the following syntax:

int *points to integer;

Notice the use of the *. This is the key to declaring a pointer; if you add it

directly before the variable name, it will declare the variable to be a pointer.

Minor gotcha: if you declare multiple pointers on the same line, you must
recede each of them with an asterisk:

// one pointer, one regular int
int *pointerl, nonpointerl;

// two pointers
int *pointerl, *pointer2;

As I mentioned, there are two ways to use the pointer to access information:
it is possible to have it give the actual address to another variable. To do so,
simply use the name of the pointer without the *. However, to access the
actual memory location, use the *. The technical name for this doing this is
dereferencing the pointer; in essence, you're taking the reference to some
memory address and following it, to retrieve the actual value. It can be tricky
to keep track of when you should add the asterisk. Remember that the
pointer's natural use is to store a memory address; so when you use the
ointer:

call to function expecting memory address (pointer);

then it evaluates to the address. You have to add something extra, the
asterisk, in order to retrieve the value stored at the address. You'll probably
do that an awful lot. Nevertheless, the pointer itself is supposed to store an
address, so when you use the bare pointer, you get that address back.

Pointing to Something: Retrieving an
Address

In order to have a pointer actually point to another variable it is necessary to
have the memory address of that variable also. To get the memory address
of a variable (its location in memory), put the & sign in front of the variable

FaheemKalwar@Yahoo.Com

name. This makes it give its address. This is called the address-of operator,
because it returns the memory address. Conveniently, both ampersand and
address-of start with a; that's a useful way to remember that you use & to
get the address of a variable.

For example:

#include <iostream>
using namespace std;

int main ()

{

int x; // A normal integer

int *p; // A pointer to an integer

P = &x; // Read it, "assign the address of x
to p"

cin>> x; // Put a value in x, we could also

use *p here

cin.ignore () ;

cout<< *p <<"\n"; // Note the use of the * to get the
value

cin.get () ;

}

The cout outputs the value stored in x. Why is that? Well, let's look at the
code. The integer is called x. A pointer to an integer is then defined as p.
Then it stores the memory location of x in pointer by using the address-of
operator (&) to get the address of the variable. Using the ampersand is a bit
like looking at the label on the safety deposit box to see its number rather
than looking inside the box, to get what it stores. The user then inputs a
number that is stored in the variable x; remember, this is the same location
that is pointed to by p.

The next line then passes *p into cout. *p performs the "dereferencing"
operation on p; it looks at the address stored in p, and goes to that address
and returns the value. This is akin to looking inside a safety deposit box only
to find the number of (and, presumably, the key to) another box, which you
then open.

Notice that in the above example, pointer is initialized to point to a specific
memory address before it is used. If this was not the case, it could be
pointing to anything. This can lead to extremely unpleasant consequences to
the program. For instance, the operating system will probably prevent you
from accessing memory that it knows your program doesn't own: this will
cause your program to crash. If it let you use the memory, you could mess

FaheemKalwar@Yahoo.Com

with the memory of any running program--for instance, if you had a
document opened in Word, you could change the text! Fortunately, Windows
and other modern operating systems will stop you from accessing that
memory and cause your program to crash. To avoid crashing your program,
you should always initialize pointers before you use them.

It is also possible to initialize pointers using free memory. This allows
dynamic allocation of array memory. It is most useful for setting up
structures called linked lists. This difficult topic is too complex for this text.
An understanding of the keywords new and delete will, however, be
tremendously helpful in the future.

The keyword new is used to initialize pointers with memory from free store (a
section of memory available to all programs). The syntax looks like the
example:

int *ptr = new int;

It initializes ptr to point to a memory address of size int (because variables
have different sizes, number of bytes, this is necessary). The memory that is
pointed to becomes unavailable to other programs. This means that the
careful coder should free this memory at the end of its usage.

The delete operator frees up the memory allocated through new. To do so,
the syntax is as in the example.

delete ptr;

After deleting a pointer, it is a good idea to reset it to point to 0. When 0 is
assigned to a pointer, the pointer becomes a null pointer, in other words, it
points to nothing. By doing this, when you do something foolish with the
pointer (it happens a lot, even with experienced programmers), you find out
immediately instead of later, when you have done considerable damage.

In fact, the concept of the null pointer is frequently used as a way of
indicating a problem--for instance, some functions left over from C return 0 if
they cannot correctly allocate memory (notably, the malloc function). You
want to be sure to handle this correctly if you ever use malloc or other C
functions that return a "NULL pointer" on failure.

In C++, if a call to new fails because the system is out of memory, then it
will "throw an exception". For the time being, you need not worry too much
about this case, but you can read more about what happens when new fails.

Taking Stock of Pointers

FaheemKalwar@Yahoo.Com

Pointers may feel like a very confusing topic at first but I think anyone can
come to appreciate and understand them. If you didn't feel like you absorbed
everything about them, just take a few deep breaths and re-read the lesson.
You shouldn't feel like you've fully grasped every nuance of when and why
you need to use pointers, though you should have some idea of some of their
basic uses.

Quiz yourself
Previous: Switch/case
Next: Structures

Lesson 8: Array basics (Printable Version)

Arrays are useful critters because they can be used in many ways. For
example, a tic-tac-toe board can be held in an array. Arrays are essentially a
way to store many values under the same name. You can make an array out
of any data-type including structures and classes.

Think about arrays like this:

(10101010l

Each of the bracket pairs is a slot(element) in the array, and you can put
information into each one of them. It is almost like having a group of
variables side by side.

E-ak-aratard

Lets look at the syntax for declaring an array.

int examplearray[100]; // This declares an array

This would make an integer array with 100 slots, or places to store
values(also called elements). To access a specific part element of the array,
you merely put the array name and, in brackets, an index number. This
corresponds to a specific element of the array. The one trick is that the first
index number, and thus the first element, is zero, and the last is the number
of elements minus one. 0-99 in a 100 element array, for example.

What can you do with this simple knowledge? Lets say you want to store a
string, because C had no built-in datatype for strings, it was common to use
arrays of characters to simulate strings. (C++ now has a string type as part
of the standard library.)

FaheemKalwar@Yahoo.Com

For example:

char astring[100];

will allow you to declare a char array of 100 elements, or slots. Then you can
receive input into it it from the user, and if the user types in a long string, it
will go in the array. The neat thing is that it is very easy to work with strings
in this way, and there is even a header file called cstring. There is another
lesson on the uses of strings, so its not necessary to discuss here.

The most useful aspect of arrays is multidimensional arrays. How I think
about multi-dimensional arrays:

/oo
—
/oo
—
[B N e W e W |
—
[B N e W e W |
—
[B M e W e W |
—

This is a graphic of what a two-dimensional array looks like when I visualize
it.

For example:

int twodimensionalarray[8][8];

declares an array that has two dimensions. Think of it as a chessboard. You
can easily use this to store information about some kind of game or to write
something like tic-tac-toe. To access it, all you need are two variables, one
that goes in the first slot and one that goes in the second slot. You can even
make a three dimensional array, though you probably won't need to. In fact,
you could make a four-hundred dimensional array. It would be confusing to
visualize, however. Arrays are treated like any other variable in most ways.
You can modify one value in it by putting:

arrayname [arrayindexnumber] = whatever;

or, for two dimensional arrays

arrayname [arrayindexnumberl] [arrayindexnumber?2] =
whatever;

However, you should never attempt to write data past the last element of the
array, such as when you have a 10 element array, and you try to write to the

FaheemKalwar@Yahoo.Com

[10] element. The memory for the array that was allocated for it will only be
ten locations in memory, but the next location could be anything, which could
crash your computer.

You will find lots of useful things to do with arrays, from storing information
about certain things under one name, to making games like tic-tac-toe. One
suggestion I have is to use for loops when access arrays.

#include <iostream>
using namespace std;

int main ()
{
int x;
int vy;
int array[8][8]; // Declares an array like a chessboard

for (x = 0; x < 8; x++) {
for (y = 0; y < 8; y++)
array[x][y] = x * y; // Set each element to a value

}
cout<<"Array Indices:\n";
for (x = 0; x < 8;x++) {
for (y = 0; y < 8; y++)
COUt<<" ["<<X<<"] ["<<y<<"]="<< array[x] [y] <<" ";
cout<<"\n";
}
cin.get () ;

}

Here you see that the loops work well because they increment the variable
for you, and you only need to increment by one. Its the easiest loop to read,
and you access the entire array.

One thing that arrays don't require that other variables do, is a reference
operator when you want to have a pointer to the string. For example:

char *ptr;

char str[40];

ptr = str; // Gives the memory address without a
reference operator (&)

As opposed to

int *ptr;
int num;

FaheemKalwar@Yahoo.Com

ptr = # // Requires & to give the memory address to
the ptr

The reason for this is that when an array name is used as an expression, it
refers to a pointer to the first element, not the entire array. This rule causes
a great deal of confusion, for more information please see our Frequently
Asked Questions.

Quiz yourself
Previous: Structures
Next: Strings

Lesson 9: C Strings
(Printable Version)

In C++ there are two types of strings, C-style strings, and C++-style strings.
This lesson will discuss C-style strings. C-style strings are really arrays, but
there are some different functions that are used for strings, like adding to
strings, finding the length of strings, and also of checking to see if strings
match. The definition of a string would be anything that contains more than
one character strung together. For example, "This" is a string. However,
single characters will not be strings, though they can be used as strings.

[RIRTRIRI2]

Strings are arrays of chars. String literals are words surrounded by double
quotation marks.

"This is a static string"

To declare a string of 49 letters, you would want to say:

char string[50];

This would declare a string with a length of 50 characters. Do not forget that
arrays begin at zero, not 1 for the index number. In addition, a string ends
with a null character, literally a '\O' character. However, just remember that
there will be an extra character on the end on a string. It is like a period at
the end of a sentence, it is not counted as a letter, but it still takes up a
space. Technically, in a fifty char array you could only hold 49 letters and one
null character at the end to terminate the string.

FaheemKalwar@Yahoo.Com

TAKE NOTE: char *arry; Can also be used as a string. If you have read the
tutorial on pointers, you can do something such as:

arry = new char[256];

which allows you to access arry just as if it were an array. Keep in mind that
to use delete you must put [] between delete and arry to tell it to free all 256
bytes of memory allocated.

For example:

delete [] arry.

Strings are useful for holding all types of long input. If you want the user to
input his or her name, you must use a string. Using cin>> to input a string
works, but it will terminate the string after it reads the first space. The best
way to handle this situation is to use the function cin.getline. Technically cin
is a class (a beast similar to a structure), and you are calling one of its
member functions. The most important thing is to understand how to use the
function however.

The prototype for that function is:

istream& getline (char *buffer, int length, char
terminal char);

The char *buffer is a pointer to the first element of the character array, so
that it can actually be used to access the array. The int length is simply how
long the string to be input can be at its maximum (how big the array is). The
char terminal_char means that the string will terminate if the user inputs
whatever that character is. Keep in mind that it will discard whatever the
terminal character is.

It is possible to make a function call of cin.getline(arry, 50); without the
terminal character. Note that '\n' is the way of actually telling the compiler
you mean a new line, i.e. someone hitting the enter key.

For a example:

#include <iostream>
using namespace std;

int main ()

{

FaheemKalwar@Yahoo.Com

char string[256]; // A
nice long string

cout<<"Please enter a long string: ";

cin.getline (string, 256, '\n'); //
Input goes into string

cout<<"Your long string was: "<< string <<endl;

cin.get () ;

}

Remember that you are actually passing the address of the array when you
pass string because arrays do not require an address operator (&) to be used
to pass their address. Other than that, you could make "\n' any character you
want (make sure to enclose it with single quotes to inform the compiler of its
character status) to have the getline terminate on that character.

cstring is a header file that contains many functions for manipulating strings.
One of these is the string comparison function.

int strcmp (const char *sl, const char *s2);

strcmp will accept two strings. It will return an integer. This integer will either
be:

Negative if sl is less than s2.
Zero if sl and s2 are equal.
Positive if sl is greater than s2.

Strcmp is case sensitive. Strcmp also passes the address of the character
array to the function to allow it to be accessed.

char *strcat (char *dest, const char *src);

strcat is short for string concatenate, which means to add to the end, or
append. It adds the second string to the first string. It returns a pointer to
the concatenated string. Beware this function, it assumes that dest is large
enough to hold the entire contents of src as well as its own contents.

char *strcpy (char *dest, const char *src);

strcpy is short for string copy, which means it copies the entire contents of
src into dest. The contents of dest after strcpy will be exactly the same as src
such that strcmp (dest, src) will return 0.

size t strlen (const char *s);

FaheemKalwar@Yahoo.Com

strlen will return the length of a string, minus the termating character ('\0').
The size_t is nothing to worry about. Just treat it as an integer that cannot
be negative, which it is.

Here is a small program using many of the previously described functions:

#include <iostream> //For cout
#include <cstring> //For the string functions

using namespace std;

int main ()

{
char name[50];
char lastname[50
char fullname[10

lastname

17
0]; // Big enough to hold both name and

cout<<"Please enter your name: g
cin.getline (name, 50);

if (strcmp (name, "Julienne") == 0) // Equal
strings
cout<<"That's my name too.\n";
else // Not equal

cout<<"That's not my name.\n";
// Find the length of your name
cout<<"Your name is "<< strlen (name) <<" letters

long\n";

cout<<"Enter your last name: ";

cin.getline (lastname, 50);

fullname[0] = "\0'; // strcat searches for
'"\O' to cat after

strcat (fullname, name); // Copy name into full
name

strcat (fullname, " "); // We want to separate
the names by a space

strcat (fullname, lastname); // Copy lastname onto

the end of fullname
cout<<"Your full name 1s "<< fullname <<"\n";
cin.get () ;

}

Safe Programming

The above string functions all rely on the existence of a null terminator at the
end of a string. This isn't always a safe bet. Moreover, some of them,

FaheemKalwar@Yahoo.Com

noticeably strcat, rely on the fact that the destination string can hold the
entire string being appended onto the end. Although it might seem like you'll
never make that sort of mistake, historically, problems based on accidentally
writing off the end of an array in a function like strcat, have been a major
problem.

Fortunately, in their infinite wisdom, the designers of C have included
functions designed to help you avoid these issues. Similar to the way that
fgets takes the maximum number of characters that fit into the buffer, there
are string functions that take an additional argument to indicate the length of
the destination buffer. For instance, the strcpy function has an analogous
strncpy function

char *strncpy (char *dest, const char *src, size t len
) ;

which will only copy len bytes from src to dest (len should be less than the
size of dest or the write could still go beyond the bounds of the array).
Unfortunately, strncpy can lead to one niggling issue: it doesn't guarantee
that dest will have a null terminator attached to it (this might happen if the
string src is longer than dest). You can avoid this problem by using strlen to
get the length of src and make sure it will fit in dest. Of course, if you were
going to do that, then you probably don't need strncpy in the first place,
right? Wrong. Now it forces you to pay attention to this issue, which is a big
part of the battle.

Quiz yourself
Previous: Arrays
Next: File I/O

Lesson 12: Introduction to Classes (Printable Version)

C++ is a bunch of small additions to C, with a few major additions. One
major addition is the object-oriented approach (the other addition is support
for generic programming, which we'll cover later). As the name
object-oriented programming suggests, this approach deals with objects. Of
course, these are not real-life objects themselves. Instead, these objects are
the essential definitions of real world objects. Classes are collections of data
related to a single object type. Classes not only include information regarding
the real world object, but also functions to access the data, and classes
possess the ability to inherit from other classes. (Inheritance is covered in a
later lesson.)

FaheemKalwar@Yahoo.Com

If a class is a house, then the functions will be the doors and the variables
will be the items inside the house. The functions usually will be the only way
to modify the variables in this structure, and they are usually the only way
even to access the variables in this structure. This might seem silly at first,
but the idea to make programs more modular - the principle itself is called
"encapsulation". The key idea is that the outside world doesn't need to know
exactly what data is stored inside the class--it just needs to know which
functions it can use to access that data. This allows the implementation to
change more easily because nobody should have to rely on it except the class
itself.

[RIRTRIRI2]

The syntax for these classes is simple. First, you put the keyword 'class' then
the name of the class. Our example will use the name Computer. Then you
put an open bracket. Before putting down the different variables, it is
necessary to put the degree of restriction on the variable. There are three
levels of restriction. The first is public, the second protected, and the third
private. For now, all you need to know is that the public restriction allows any
part of the program, including parts outside the class, to access the functions
and variables specified as public. The protected restriction prevents functions
outside the class to access the variable. The private restriction is similar to
protected (we'll see the difference later when we look at inheritance. The
syntax for declaring these access restrictions is merely the restriction
keyword (public, private, protected) and then a colon. Finally, you put the
different variables and functions (You usually will only put the function
prototype[s]) you want to be part of the class. Then you put a closing
bracket and semicolon. Keep in mind that you still must end the function
prototype(s) with a semi-colon.

Let's look at these different access restrictions for a moment. Why would you
want to declare something private instead of public? The idea is that some
parts of the class are intended to be internal to the class--only for the
purpose of implementing features. On the other hand, some parts of the
class are supposed to be available to anyone using the class--these are the
public class functions. Think of a class as though it were an appliance like a
microwave: the public parts of the class correspond to the parts of the
microwave that you can use on an everyday basis--the keypad, the start
button, and so forth. On the other hand, some parts of the microwave are
not easily accessible, but they are no less important--it would be hard to get
at the microwave generator. These would correspond to the protected or
private parts of the class--the things that are necessary for the class to
function, but that nobody who uses the class should need to know about. The
great thing about this separation is that it makes the class easier to use (who
would want to use a microwave where you had to know exactly how it works
in order to use it?) The key idea is to separate the interface you use from the

FaheemKalwar@Yahoo.Com

way the interface is supported and implemented.

Classes must always contain two functions: a constructor and a destructor.
The syntax for them is simple: the class name denotes a constructor, a ~
before the class name is a destructor. The basic idea is to have the
constructor initialize variables, and to have the destructor clean up after the
class, which includes freeing any memory allocated. If it turns out that you
don't need to actually perform any initialization, then you can allow the
compiler to create a "default constructor"” for you. Similarly, if you don't need
to do anything special in the destructor, the compiler can write it for you too!

When the programmer declares an instance of the class, the constructor will
be automatically called. The only time the destructor is called is when the
instance of the class is no longer needed--either when the program ends, the
class reaches the end of scope, or when its memory is deallocated using
delete (if you don't understand all of that, don't worry; the key idea is that
destructors are always called when the class is no longer usable). Keep in
mind that neither constructors nor destructors return arguments! This means
you do not want to (and cannot) return a value in them.

Note that you generally want your constructor and destructor to be made
public so that your class can be created! The constructor is called when an
object is created, but if the constructor is private, it cannot be called so the
object cannot be constructed. This will cause the compiler to complain.

The syntax for defining a function that is a member of a class outside of the
actual class definition is to put the return type, then put the class name, two
colons, and then the function name. This tells the compiler that the function
is @ member of that class.

For example:

#include <iostream>
using namespace std;

class Computer // Standard way of defining the class
{
public:
// This means that all of the functions below this (and
any variables)
// are accessible to the rest of the program.
// NOTE: That is a colon, NOT a semicolon...
Computer () ;
// Constructor

FaheemKalwar@Yahoo.Com

~Computer () ;

// Destructor

void setspeed (int p);

int readspeed();
protected:

// This means that all the variables under this, until
a new type of

// restriction is placed, will only be accessible to
other functions in the

// class. NOTE: That is a colon, NOT a semicolon...

int processorspeed;
}i

// Do Not forget the trailing semi-colon

Computer: :Computer ()
{

//Constructors can accept arguments, but this one does
not

processorspeed = 0;

}

Computer: :~Computer ()
{
//Destructors do not accept arguments

}

void Computer: :setspeed (int p)
{

// To define a function outside put the name of the
class

// after the return type and then two colons, and then
the name

// of the function.

processorspeed = p;
}
int Computer::readspeed()
{

// The two colons simply tell the compiler that the
function is part

// of the class

return processorspeed;

}

int main ()
{

Computer compute;

// To create an 'instance' of the class, simply treat
it like you would

FaheemKalwar@Yahoo.Com

// a structure. (An instance is simply when you
create an actual object

// from the class, as opposed to having the definition
of the class)

compute.setspeed (100);

// To call functions in the class, you put the name of
the instance,

// a period, and then the function name.

cout<< compute.readspeed() ;

// See above note.

}

This introduction is far from exhaustive and, for the sake of simplicity,
recommends practices that are not always the best option. For more detail, I
suggest asking questions on our forums and getting a book recommended by
our book reviews.

Quiz yourself
Previous: Typecasting
Next: Functions Continued

Lesson 13: More on Functions (Printable Version)

In lesson 4 you were given the basic information on functions. However, I left
out one item of interest. That item is the inline function. Inline functions are
not very important, but it is good to understand them. The basic idea is to
save time at a cost in space. Inline functions are a lot like a placeholder.
Once you define an inline function, using the 'inline' keyword, whenever you
call that function the compiler will replace the function call with the actual
code from the function.

[RIRIRIRIL]

How does this make the program go faster? Simple, function calls are simply
more time consuming than writing all of the code without functions. To go
through your program and replace a function you have used 100 times with
the code from the function would be time consuming not too bright. Of
course, by using the inline function to replace the function calls with code you
will also greatly increase the size of your program.

Using the inline keyword is simple, just put it before the name of a function.
Then, when you use that function, pretend it is a non-inline function.

For example:

FaheemKalwar@Yahoo.Com

#include <iostream>
using namespace std;

inline void hello ()
{ cout<<"hello";
int main ()
{ hello () ;

cin.get ()
}

//Call it like a normal function...

However, once the program is compiled, the call to hello(); will be replaced
by the code making up the function.

A WORD OF WARNING: Inline functions are very good for saving time, but if
you use them too often or with large functions you will have a tremendously
large program. Sometimes large programs are actually less efficient, and
therefore they will run more slowly than before. Inline functions are best for
small functions that are called often.

Finally, note that the compiler may choose, in its infinite wisdom, to ignore
your attempt to inline a function. So if you do make a mistake and inline a
moster fifty-line function that gets called thousands of times, the compiler
may ignore you.

In the future, we will discuss inline functions in terms of C++ classes. Now
that you understand the concept I will feel more comfortable using inline
functions in later tutorials.

Quiz yourself
Previous: Classes
Next: Reading command-line arguments

Lesson 14: Accepting command line arguments (Printable
Version)

In C++ it is possible to accept command line arguments. Command-line
arguments are given after the name of a program in command-line operating
systems like DOS or Linux, and are passed in to the program from the
operating system. To use command line arguments in your program, you

FaheemKalwar@Yahoo.Com

must first understand the full declaration of the main function, which
previously has accepted no arguments. In fact, main can actually accept two
arguments: one argument is number of command line arguments, and the
other argument is a full list of all of the command line arguments.

[RIQRIRIL]

The full declaration of main looks like this:

int main (int argc, char *argv[])

The integer, argc is the ARGument Count (hence argc). It is the number of
arguments passed into the program from the command line, including the
name of the program.

The array of character pointers is the listing of all the arguments. argv[0] is
the name of the program, or an empty string if the name is not available.
After that, every element number less than argc are command line
arguments. You can use each argv element just like a string, or use argv as a
two dimensional array. argv[argc] is a null pointer.

How could this be used? Almost any program that wants its parameters to be
set when it is executed would use this. One common use is to write a
function that takes the name of a file and outputs the entire text of it onto
the screen.

#include <fstream>
#include <iostream>

using namespace std;

int main (int argc, char *argv[])
{

if (argc != 2) // argc should be 2 for correct
execution

// We print argv[0] assuming it is the program name
cout<<"usage: "<< argv[0] <<" <filename>\n";
else {
// We assume argv[l] is a filename to open
ifstream the file (argv[1l]);
// Always check to see if file opening succeeded
if (!the file.is open())
cout<<"Could not open file\n";
else {
char x;

FaheemKalwar@Yahoo.Com

// the file.get (x) returns false if the end of
the file
// 1s reached or an error occurs
while (the file.get (x))
cout<< x;
}
// the file is closed implicitly here
}
}

This program is fairly simple. It incorporates the full version of main. Then it
first checks to ensure the user added the second argument, theoretically a
file name. The program then checks to see if the file is valid by trying to open
it. This is a standard operation that is effective and easy. If the file is valid, it
gets opened in the process. The code is self-explanatory, but is littered with
comments, you should have no trouble understanding its operation this far
into the tutorial. :-)

Quiz yourself

Previous: Functions Continued
Next: Linked Lists

[EIST8]

FaheemKalwar@Yahoo.Com

